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SUMMARY

A new mesh movement algorithm is presented based on a Legendre transform arising from optimal
transportation theory. This naturally allows the mesh connectivity to change, so that adjacent cells can
move apart to avoid regions of distorted or poor quality mesh. It is applied here to the Euler equations
with conservation on such a mesh achieved by the construction of space–time cells. The method is
demonstrated on problems with large deformations and where the regions of concentrated mesh change
their topology, e.g. merging and separating. q British Crown Copyright 2007/MOD. Reproduced with
permission. Published by John Wiley & Sons, Ltd.
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1. INTRODUCTION

A large class of current algorithms for governing mesh motion (e.g. [1–3]) are based on harmonic
maps, which minimize the elastic energy stored in the deformation of the current mesh from a
reference mesh. Monitor functions are used to specify the coefficients of elasticity at each point
in the mesh, so that it concentrates where desired.
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This model requires the deformation to be differentiable with the result that the mesh connectivity
must remain fixed which can result in areas of distorted or poor quality cells.

Optimal transportation theory [4] considers a closely related problem, where again one region
must be deformed into another but now any movement incurs a given cost, for example, being
proportional to the distance moved. Specifically, an initial distribution � of some quantity, e.g.
sand in a heap, is to be transported into a final distribution � of the same total volume.

The adapted mesh is generated by minimizing the total transportation cost I [t]=∫
c(x, t(x))

d�(x), where c(x,y) is the cost of moving a unit of sand from x to y= t(x). It is no longer
important to the total cost whether initially adjacent points remain close or not, which means that
neighbouring cells in the reference mesh can end up being moved apart in the deformed mesh,
although in practice they do not move far. As with harmonic maps, existence and uniqueness
of minimizers (for convex regions and cost functions) has been proved but numerical solution
techniques are still evolving. Here one such method—the geometric method [5], originating from
meteorology [6]—is applied to the Euler equations.

2. MESH CONSTRUCTION USING THE LEGENDRE TRANSFORM

The key result is that for quadratic cost (c(x,y)=|x−y|2), the optimal transport plan, when it
exists, is of the form t=∇�(x) for some convex scalar function �. Furthermore, x=∇t�(t) where
�, � are Legendre–Fenchel transforms of each other—an extension of the more familiar Legendre
transform to functions that are not convex or differentiable.

The general strategy of the geometric method is to iteratively improve � until t=∇�(x) correctly
transports � into �. The Legendre–Fenchel transform of a convex piecewise linear function is
another convex piecewise linear function, hence provides simple approximations for � and � that
can exactly satisfy the transform criterion. The projections of �, � onto their base planes then
constitute the reference and deformed meshes. We set �=1 and � to be concentrated on a fixed set
of points, one for each cell, the mass of each then setting a target area for that cell. The vertices of
� are located at the fixed set, and on iteration the heights are adjusted by the conjugate gradient
method to minimize the difference between the actual and target areas. This raises or lowers the
faces of � with gradient unchanged, which can result in changes to the connectivity of the mesh,
e.g. as shown below, where cells a and c move apart and cells b and d become new neighbours:

ϕϕϕ
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For efficiency, instead of constructing a new mesh from scratch each iteration [5], the panel beater
algorithm [6, Section 5.3.2, 7] modifies the current mesh, locally adjusting the connectivity as
required. Cells could be added or removed with a similar procedure. The geometric method extends
naturally to higher dimensions and has been implemented in three dimensions, but the explicit
geometric repair in the panel beater algorithm becomes increasingly complex.

3. APPLICATION TO THE EULER EQUATIONS

A 2D second-order Godunov (MUSCL-Hancock) scheme, adapted from Azarenok et al. [8], is
applied to the standard Euler equations for a perfect fluid with reflective or transmissive boundary
conditions. In it time is used as the third dimension and the mesh at the start of the time step is
‘joined up’ to the mesh at the end to create space–time cells.

When a connectivity change occurs this leaves a tetrahedral ‘gap’ that is split into four sub-
tetrahedra each assigned to it’s neighbouring cell.

The flow variables at tn+1 are used to determine the monitor functions and hence set new cell
areas at tn+1 according to the equidistribution criterion, aimi =constant, for area ai and scalar
monitor mi in cell i . A mesh intensity parameter � is also used [3]. The mesh at tn+1 is adjusted
by the geometric method to realize these new cell areas and the flow variables re-evaluated. These
steps are iterated a fixed number of times or until the mesh movement drops below a tolerance or
adjacent connectivity changes occur (which happens occasionally in practice).

4. MONITOR FUNCTION

The mesh movement scheme is global—on changing the area of a single cell the entire mesh
moves to accommodate it. For the above iteration to converge, the monitor needs to have minimal
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Figure 1. Rayliegh–Taylor instability (t=0, 0.172, 0.248; 0.341, 0.471, 0.626; 855 cells).

mesh dependence in the presence of discontinuities in the flow variables from, e.g. shocks. To
this end, the moving least-squares method [9] is employed. The error in a variable f is Ei (x)=∫
|x′−x|�h w(|x′−x|)[ f (x′)− f̄i (x′)]2 dx′ ≈∑

j w j [ f j − f̄i (x′
j )]2, where f j is the cell average of f

in cell j , w j =a jw(r j )/
∑

k akw(rk), where a j ,x′
j are the area and centroid of the part of cell

j inside the circle radius h about x, r j =|x′
j −x| and the weight w(r)=cos2(�r/2h) here. The

approximants f̄i (x), i=0,1,2, . . . , are constant, linear, quadratic, etc. polynomials in x, y with
coefficients determined by minimizing Ei . Here, f is density and instead of, say, the extracted
gradient of f̄i , the least-squares errors Ei were found to be the smoothest available quantities.
For smooth data, E0−E1 is proportional to the gradient (squared) and E1−E2 is related to the
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Figure 2. Outward elliptical shock (t=0, 0.103, 0.345, 0.624; 1.121, 1.293, 1.441, 1.602; 855 cells).
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principal curvatures. For nonsmooth data, these errors are still smooth, being proportional to the
jump in monitor (squared). For the Sod shock tube at t=0.6s, these errors are (density in red,
E0,E1,E2 (scaled) are green, pink and blue).

-2 -1.5 -1 -0.5 0  0.5 1  1.5 2
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Theoretically E1,E2, . . . can be used to distinguish discontinuities from smoother regions in the
flow, but as seen above they are slightly noisier and bias towards shocks more than E0.

5. RESULTS

(1) Rayleigh–Taylor instability: The initial conditions are: �=2.0 (lhs), 1.0 (rhs), g=1.0 (to the
right), u=ke−2�x cos(2�y), v=ke−2�x sin(2�y), where k=1.02 and the pressure so as to be in
equilibrium. For this problem, the monitor m=E1+E2 is successful (Figure 1).

(2) Elliptical shock: Initially �= p=1 inside the ellipse (x/0.4)2+(y/0.3)2=1, �=0.125, p=
0.1 outside. Figure 2 shows the mesh adapting as the regions requiring more mesh move around
the domain and change topology, although few cells are used to properly resolve discontinuities.
The previous monitor proved unsatisfactory; hence, here m=E0+0.1E1+0.01E2.

The problems ran in 62 and 43min, respectively, on a PC (AMD Athlon 3800 CPU).
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